Matemática na Web

Operações fundamentais com números naturais

Temas:

← Voltar

Adsense

Expressões numéricas

 

Expressões numéricas envolvendo a adição e a subtração

 

Quando dois ou mais números estão relacionados por sinais de operações, eles constituem uma expressão numérica.

Exemplo:

5 + 3 − 2

10 − 2 + 1 − 4

Toda expressão numérica pode ser representada por um único numeral, que se obtém efetuando – se as operações indicadas.

Esse numeral chama-se valor da expressão numérica.

Uma expressão numérica que envolve adição e subtração é resolvida efetuando-se as operações na ordem em que se apresentam.

Exemplos:

a) 15 + 9 − 3 =

     = 24 − 3 =

= 21

Observe que:

→ Primeiro efetuamos a operação 15 + 9 = 24

→ Depois efetuamos a operação 24 − 3 = 21

b) 10 − 4 + 2 − 3 =

= 6 + 2 − 3 =

= 8 − 3 =

= 5

Observe que:

→ Primeiro efetuamos a operação 10 − 4 = 6

→ Em seguida efetuamos a operação 6 + 2 = 8

→ Depois efetuamos a operação 8 − 3 = 5

Algumas expressões numéricas podem apresentam sinais de associação.

 

(  ) parênteses            [  ] colchete            {  } chaves

 

Esses sinais indicam que devemos primeiramente resolver as operações neles contidas. Por ordem, resolvem-se primeiro os parênteses, depois os colchetes e, a por ultimo, as chaves.

Antes de resolver expressões numéricas com sinais de associação, vejamos a importância desses sinais na pontuação de uma expressão. Considere, por exemplo as expressões:

(12 − 5) + 3   e   12 − (5 + 3)

Verifique que a única diferença aparente entre as duas expressões é a posição dos parênteses. Vamos resolvê-las:

(12 − 5) + 3 =|12 − (5 + 3) =
=7 + 3 =|= 12 − 8 =
= 10|= 4

Como você pode observar, a posição do sinal de associação tem muita importância, pois, colocado em posição deferentes, pode levar a um resultado diferente.

Vamos acompanhar com atenção a resolução das seguintes expressões numéricas:

a) [10 + (6 − 4) + 3] − 8 =

= [10 + 2 + 3] − 8 =

= 15 − 8 =

= 7

Observe que:

→ Primeiro foi resolvido a operação que está dentro dos parênteses. 6 − 4 = 2

→ Em seguida foi resolvido as operações que estão dentro dos colchetes. 10 + 2 + 3 = 15

→ Depois resolvemos a operação que restou. 15 − 8 = 7

b)10 + {12 − [4 + (7 − 2) − 1]} =

= 10 + {12 − [4 + 5 − 1]} =

= 10 + {12 − [9 − 1]} =

= 10 + {12 − 8} =

= 10 + 4 =

= 14

Observe que:

→ Primeiro foi resolvido a operação que está dentro dos parênteses. 7 − 2 = 5

→ Depois, resolvemos as operações que estão dentro do colchete. Como temos duas operações 4 + 5 − 1, resolvemos primeiro a operação na ordem a que se apresenta, ou seja, resolvemos primeiro 4 + 5 = 9

→ Ainda nos colchetes, teremos que resolver o restante da operação. o resultado de 4 + 5 = 9 diminuindo de 1, ficando: 9 − 1 = 8.

→ Em seguida teremos que resolver a operação que está dentro das chaves, então fica: 12 − 8 = 4

→ Finalmente, resolve a operação que estou. 10 + 4 = 14

 

Expressões numéricas envolvendo a multiplicação e divisão

 

O cálculo do valor numérico de uma expressão deve obedecer às seguintes regras:

• Primeiro devemos efetuar as multiplicações ou divisões (na ordem em que aparecem);

•Depois, as adições ou subtrações (também na ordem em que aparecem).

Vejamos alguns exemplos

a) 12 + 3 x 5 − 10 =

= 12 + 5 − 10 =

= 27 − 10 =

= 17

Observe que:

→ Primeiro resolvemos a multiplicação. 3 x 5 = 15

→ Depois foi resolvida as adições e subtrações, na ordem em que aparecem.

b) 12 − 15 : 3

= 12 − 5 =

= 7

c) 20 : 4 + 3 x 2  − 15 : 5 =

= 5 + 6 − 3 =

= 11 − 3 =

= 8

Se houver sinais de associação, precedemos à resolução na ordem já conhecida: primeiro os parênteses, depois as expressões entre colchetes e, finalmente, as expressões entre chaves, sempre respeitando a ordem da resolução das operações.

Veja alguns exemplos:

a) 9 − {2 · [4 + 3 · (5 − 3) − 2 x 4]} =

= 9 − {2 · [4 + 3 x 2 − 2 x 4]} =

= 9 − {2 · [4 + 6 − 8]} =

= 9 − {2 · [10 − 8]} =

= 9 − {2 x 2} =

= 9 − 4 =

= 5

b) 7 + 3 · (4 + 5) + 2 =

= 7 + 3 · 9 + 2 =

= 7 + 27 + 2 =

= 36

c) 48 − {28 − 4 · [3 · (40 : 5 − 3) : (17 − 3 x 4)]} =

= 48 − {28 − 4 · [3 · (8 − 3) : (17 − 12)]} =

= 48 − {28 − 4 · [3 x 5 : 5]} =

= 48 − {28 − 4 · [15 : 5]} =

= 48 − {28 − 4 x 3} =

= 48 − {28 − 12} =

= 48 − 16 =

= 32

 

Expressões numéricas envolvendo potenciação e radiciação

 

→ Para calcular o valor de uma expressão, realizamos as operações na seguinte ordem: primeiro resolvemos as potências e raiz quadrada (na ordem em que aparecem) de houver;

→ Depois, as multiplicações ou divisões (na ordem em que parecem) se houver;

→ Finalmente, as adições ou subtrações (também na ordem em que aparecem).

Exemplo:

a) 32 x 2 + 62 : 4 − 23 =

= 9 x 2 + 36 : 4 − 8 =

= 18 + 9 − 8 =

= 27 − 8 =

= 19

Observe que:

→ Resolvemos primeiro as operação de potências

→ Em seguida, foi resolvido a multiplicação e a divisão

→ Por ultimo, resolvemos as operações de adição e subtração na ordem em que aparece

b) 3^{2} + 2 \times 5 -\sqrt[]{9} =

= 9 + 10 − 3 =

=  19 − 3 =

= 16

É importante lembrar, que em uma expressão numérica onde aparece os sinais de associação, devemos resolver na seguinte ordem: parênteses, colchetes e chaves.

Exemplo:

22 · {25 − [34 : (23 − 1 x 5) − 32]} =

= 4 · {25 − [81 : (8 − 1 x 5) − 9]} =

= 4 · {25 − [81 : (8 − 5) − 9]} =

= 4 · {25 − [81 : 3 − 9]} =

= 4 · {25 − [27 − 9]} =

= 4 · {25 − 18} =

= 4 · 7 =

= 28

 

Resumindo

 

Vimos que quando dois ou mais números estão relacionados por sinais de operações (+, −, ×, ÷) eles constituem uma expressão numérica. Para resolver essas expressões, devemos respeitar algumas regras, que são:

→ Resolver primeiro as potenciações e radiciações na ordem em que se apresenta,  se houver.

→ Em seguida resolver as multiplicações e divisões na ordem em que se apresenta, se houver.

→ Por fim resolver as adições e subtrações na ordem em que se apresenta.

Quando uma expressão numérica tiver sinais de associação (parêntese ( ), colchetes [ ] e chaves { }), primeiro, efetuam-se as operações que estão dentro dos parênteses, em seguida as operações que estão dentro dos colchetes e por fim, as operações que estão no interior das chaves, lembrando respeitar as regras de prioridade das operações mencionadas acima.

Caso tenha alguma dúvida, critica ou sugestão ao conteúdo, fique a vontade de deixar um comentário abaixo.

2 Comentários

  1. Adler Torres

    Olá, tudo bem? No final de cada assunto tem exercícios com as resposta.

  2. Renata

    Muito bom mais vcs poderia colocar execícios pra gente responder

Enviar um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *